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Abstract

Two maximum likelihood methods for estimating the parameters of stochastic dif-
ferential equations (SDE) from time-series data are proposed. The first is that of
simulated maximum likelihood in which a nonparametric kernel is used to construct
the transitional density of an SDE from a series of simulated trials. The second
approach uses a spectral technique to solve the Kolmogorov equation satisfied by
the transitional probability density. The exact likelihood function for a geomet-
ric random walk is used as a benchmark against which the performance of each
method is measured. Both methods perform well, with the spectral method return-
ing results which are practically identical to those derived from the exact likelihood.
The techrique is illustrated by modelling interest rates in the UK gilts market us-
ing a fundamental one-factor term-structure equation for the instantaneous rate of

interest.
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1 Introduction

The notion of a stochastic system of differential equations (SDEs), defined as a deter-
ministic system of differential equations perturbed by random disturbances that are not
necessarily small, has been used profitably in a variety of disciplines including infer alia
engineering, environmetrics, physics, population dynamics and medicine. Whilst the
analysis of stochastic processes has received extensive treatment over a long period, the
estimation of the parameters of such processes has until recently received less attention.
Indeed it has recently been argued with some force that the difficulty of obtaining consis-
tent estimates of the parameters of nonlinear SDEs is one of the most pressing difficulties
In statistical inference of continuous-time processes with discretely sampled data 131

This article investigates the feasibility of estimating the parameters of a nonlinear stochas-
tic differential equation by two possible strategies, both of which are based on the maxi-
mum likelihood principle. The first approach simulates the likelihood by a nonparametric
method whereas the second obtains the likelihood by numerical solution of the fundamen-
tal partial differential equation underlying its propagation, often called the Kolmogorov
or Fokker-Plank equation.

2 Overview of the parameter estimation problem

Suppose that zg, 21, -, 2z, is a sequence of n + 1 historical observations of the random
variable X{f) sampled at non-stochastic dates #, < ¢, < ... < #,. The joint transitional
density of this sample is

Te
flao---2n;8) = folzol8) T f(me, tr]zr-1,te1; 6) (1)
k]
where fy is the density of the initial state and § is a vector of parameters. The optimal
wlues of 4, denoted here by &, may be estimated by maximising the joint transitional den-
ity function {1) with respect to the parameters §. In fact, it is normally more convenient
to minimise the negative log-likelihood function

L(0) = ~log fo(Blzo) — > log f(8; xr, te] T, tro1) -

k=1

As usual, § is consistent and satisfies the limiting distributional property (see [3])

o[22,

Va0~ 8y ~ N (0,1719)) I(0) = lim 5600

n—)-oo 72

The general SDE in one dimension has format
4X(1) = alt, X; 6) dt + o(t, X;0) dW(2) (@)

where dW(¢) is the differential of the Wiener process W{(t) and 4 is a vector of Sys-
tem parameters. The function a(t, X; ) is often called the instantaneous drift of X(t)
while o%(¢, X; ) is its instantaneous variance. The probability density function flt,z;8)
corresponding to (2} satisfies the forward Kolmogorov equation

af 1 &

5 =55 — (o*(t,2;0)f) - a%(a(taw;ﬁ)f) » (3)
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If a closed form expression for f is available then computation of 6 is straightforward.
However, this is rarely the case and so it is reasonable to explore other ways to estimate
the transitional density f.

2.1 Simulated maximum likelihood

The simulation approach to the construction of the likelihood function is based on the
estimation of probability density using a kernel. Given m observations xy--- ., of the
random variable X, the kernel has generic form

=) 4

(z) K (%

oo mh Z

where A is the kernel bandwidth and K'(.) is a suitable non-negative function enclosing
unit mass. By comstruction, [ satisfies automatically the properties of a probability
density function. The operating efficacy of the kernel is dominated by the efficiency with
which the bandwidth 4 can be determined. In this application, the normal kernel was
selected since it is known to be only marginally inferior to the optimal Epinechnikov
kernel but has a “plug in” bandwidth given by A = 0.90 m~Y/® where ¢ is the standard
deviation of the data ([10, 11]).

The implementation of a nonparametric kernel is well documented and understood and

so merits no further attention. The simulation procedure for computing the transitional
density of the stochastic process described by {2) is as follows:

1. Generate S, an m x n matrix of vector increments of a Wiener process. The -th
row of S is used in the i-th simulation of the SDE and consists of vector entries Sy,
{j = 1.--n) each of which contributes a Gaussian distributed random vartable with
variance (tj —~t;_1). For small intervals {t;_;,1;), vectors of dimension 1 may be
adequate but for larger time intervals, more stochastic realisation may be necessary

to achieve satisfactory accuracy.

o]

Use a standard algorithm, for example the Milstein scheme ([8]), to integrate the
SDE numerically between observations using the stochastic increments contained
in 5. Store the simulations in T', an m x n matrix of trials.

3. At each time step ¢;, J = 1.--n, use the j-th column of the trial matrix 7" to
construct a kernel estimate of the transitional density from ¢;_; to ;.

4. Use the kernel to estimate the density of the field data point z;. The product of
these estimates for all n field points is the likelihood function to be maximised. In
practice, it is convenien$ to minimise the negative log-likelihood function.

2.2  “Exact” maximum likelibood

1t has already been indicated that every system of SDE’s has aun associated partial differ-
ential equation (Kolmogorov equation) that describes the density of the solutions of the
SDE’s in time and state space — in effect, the solution of the Kolmogorov equation is
the limiting density that would be achieved by an infinite number of simulations of the
SDE’s. Traditional econometrics has focused on the need to provide closed-form solutions
to Kolmogorov’s equation. However, this equation is now amenable to modern numerical
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methods since it is linear and of second order in state space. Therefore it is not necessary
to confine attention to the class of SDE’s for which a solution is known.

Here the Kolmogorov equation is integrated by a speciral method. The procedure in one
dimension is now summarised but generalises to many dimensions. Briefly, the original
partial differential equation is first mapped into the finite interval [—1,1]. The solution
in this interval is then approximated by a spectral series (often based on Chebyshev poly-
nomials) whose coefficients are functions of time only. The partial differential equation
1s then used to construct a set of ordinary differential equations for the time evolution of
these coeflicients. Spectral approximations exhibit exponential accuracy as the number
of polynomials is increased. In practice machine accuracy is often reached with compar-
atively small numbers of polynomials.

The procedure is now illustrated for a solution procedure based on Chebychev polynomi-
ais. Some preliminary results are established.

2.2.1 Chebychev polynomials
The family of polynomials T,(z) is defined by the relation
Tw{cos §) = cos(nt) , n=01,-. (5)

From their definition (5), it can be shown easily that Chebyshev polynomials satisfy the
unportant relations

2Tu(2)Tn(2) = Tnan{z) + Tin-mi{2)
Tonlz) _ Thalz)

e == o "L (6)
U () Tn(z)
ST = b, 0 =2,0n=1 n>1.
1 io 2 5° 0= 20 "=

Suppose now that g is a function defined in [—1,1] with Chebyshev expansion

9(z) =2 _aTilz), (7)
k=f}
then by multiplying both sides of this equation by T.(z)/+/1 ~ 2? and integrating over
[—1,1], it follows immediately that

) 1 2] T
_ 2 [ gle)Tz) 2
gn = ‘7}"57:[.1 W\/l—:—_.“m-—;dz == ﬂ’_(,‘nJ{} _(](COSH) COS(TL&) dg . (8)
Furthermore, if g is differentiable with respect to z in (—1,1) then property (6,) can be
used to verify that

g < (1 :

=20 T2, ag) =gh 2kt Do k20, (9)

P

Suppose that the representation (7) involves only {V + 1) polynomials so that gyy1 =
gn+z = - = (0, then under these circumstances, gj(é) = gﬁii = --- =0, and the iferative
relationship (9) now becomes a practical algorithm for the calculation of gél), e :‘gﬁ)—l?
the spectral coefficients of g'(z).
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2.2.2 Mappings

To take adavntage of these properties of Chebyshev polynomials, it is first necessary to
map the sample space of the SDE into [—1,1]. If the sample space is [0, o0), a situation
that occurs often in practice, then for any L > 0, the mapping

z— L
x4+ L

P —

re(0,00), zel[-1,1), (10}

is one popular way to connect z in the sample space with z in [=1,1). If g(z) is the
functional form of f(x) when z is replaced by z from formula (10), it can be shown that
differentiation with respect to x and z are related by the useful formula
[ .2
G 1= 0 (11)
dx 2 0Oz

Henice if g(z) and g'{z) have Chebyshev spectral representations (7) and (9) then x df /dx
has spectral expansion

If L 1—-29d ‘ oo
;I‘if; = Zg;{i}TA(Z) o ( . )d_%’ — (TD(:) - T‘z(;‘)) Zgil)Tk(:)
T ke * k=0
= o (26" = ) Tol) + 5 (6 - 87) Tu(2)

o {t 1) 1Y e
(293{; - gi-uz - Qﬂiwr)z) Ti(z) .

Ho |

In conclusion,

NE R AT N oY 0 _Lom o
Yo —4(390 9‘2)1 9‘1—4(91 93),
1

2.2.3 Kolmogorov’s equation

Many popular models in the literature are special cases of the stochastic differential
equation

de = pl{o - T)dt + ca"dW (13}
where W(t) is a standard Wiener process and u, , ¢ and y are model parameters. It is
therefore convenient and sensible to demonstrate the spectral technique with reference o
equation (13). The Kolmogorov equation correspending to (13) has sample space [0, 0o}
and can bhe expressed in the form

af  ate[ g ( A f

a2 T

{14)

The mapping (10) is now used to change variables from x to z in the differential equation
(14). When = 0 and = 1, equation {13) describes a geometric random walk with drift
pr and variance oz, Let f(t,x) = g(t,z) then in this case g satisfies

. 2 P ; Jer? — ¢
dg o 2y O (l__zz)f)ﬁ>+M(}_gz)§g+(ag—p)g,

PO — o2 =
o =gt R 7 R
g{0,2) = é(z — z) , zo={1—L}{1+L).

(15)
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Now suppose that g{t, z) has Chebyshev spectral expansion

ng e (16)

By multiplying (15) by Tj(z)/+/1 — z? and integrating over [—1,1], it can be shown that
golt),qi{t) -+, gny_2(t) satisfy the ordinary differential equations

dy; o2 302 —2u) . . _

W T - BT 0 gy, G0N,
di 8 4

where qu) and qs are related through an equation akin to (12) while a " and gg ) are

related through an equation similar to (9). In this instance, the coeﬂicmnts gn—-1{t) and
gn{t) are determined algebraically from the relations

N N
g(ta'—z) = Z(-l)kgk(t):[)a g(tvl) - ng(t)“:e (18)
k=0 k=0
and correspond to the boundary conditions f(¢,2) — 0 as ¢ — 0 and x — oo respectively.
Self evidently,
}N 2

N2
?;(lm(ml)N*’“)gk, =-~WZ(1+( 1" *g. . (19)

gN—1 = —

DO | e

Hence equations {17} are regarded as a system of ordinary differential equations for
go - - gn—» where it is understood that occurrences of gy—; and gy on the right hand side
of (17} ave replaced by expressions (19). Finally, the initial conditions for g9, g1, , gv—2
are derived from the initial condition in (15;). If zg = cos 8y then 6y = 2tan~'{\/L) and
the values of the coefficients of g corresponding to a delta-like initial condition are

P
ge(0) = ——cos(2ktan* VL),  k=0,1--N—-2. (20)

Tk

3 Results

The SDE describing a geometric random walk is an ideal candidate on which to test these
ideas as it is not only of practical relevance in stochastic modeliing but also has an exact
solution and probability density function that are known. If X(0) = 2y then the exact
solution and conditional probability density function are respectively

2{t) = weexpl(p — o)+ oW,

2

i ~ 1 (iog (zfz0) — {1 ~ &) t} (21)
flt,z) = Soeval P | T 5577 :

Table 1 demonstrates that spectral integration of the Kolmogorov equation can be per-
formed with high accuracy, despite the fact that the initial condition is delta-like. As
expected, larger numbers of polynomials are required to resolve the structure of the delta
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N BError i At=001|At=005|At=01 [ At=025]At=10.5
20 Absolute 4.8576 0.5550 0.2307 0.0369 0.0031
Relative 20 oo o6 o's) 0.26885
40 Absolute 2.4720 0.0665 (3.0027 0.0005 0.0601
Relative ) 0.4682 0.0582 0.0289 0.0076
60 Absolute | 1.0150 0.0620 0.0011 0.0002 0.0001
Relative oo 0.0496 (.0294 (.0088 0.0026
80 Absolute ] 0.3273 0.0003 (.0604 5.0001 0.0000
Relative | 0.1046 0.0072 0.0050 $.0035 (3.0026
100 | Absolute| 0.0786 0.0005 (.0000 0.0000 0.0000
Relative 0.1271 0.0130 0.0021 0.0006 0.0003
150 Absolute (.0025 0.0002 (.0001 0.0600 0.0000
Relative 0.0089 0.0033 0.0021 0.0009 0.0001
200 | Absolute i 0.0008 (.0000 0.0000 0.0000 0.0000
Relative | 0.0027 0.6605 (.0011 0.0003 0.0002

Table 1: Comparison of the exact and spectral solutions to Kolmogorov's equation for the
geometric random walk with parameters g = 1.0 and ¢ = 0.5. The comparison is made
over all nodes whose density exceeds 1% of the peak density.

function for small time intervals. As the time interval increases, significantly less poly-
nomials are required to achieve the same accuracy. In fact, when the spectral solution
is used to estimate model parameters in parallel with the exact solution, no discernable
differences are encountered for more than 60 polynomials. This is a remarkable result
given that each integration step starts from a delta funciion.

The results of a simulation exercise to compare the kernel and exact/spectral estimates
for the parameters of the geometric random walk are reported in Table 2. There are a
nurnber of interesting points to note.

1. As expected, the parameter values and their standard errors are uniformly better
for the exact/spectral solution.

2. The kernel method performs with credit. The size of the time interval does not
seem to influence the estimates unduly provided the time intervals over which the

simulations are done is relatively small (the case here).

3. The results indicate that increasing the time span of the integration (changing At
with a fixed number of observations) improves the precision with which i is esti-
mated. The best estimator of &%, however, would be based on as many observations
as possible, regardless of the sampling interval. The consistency of &% and the in-
consistency of [ under continuous-record asymptotics was first observed by Merton
([9]) for geometric Brownian motion, and this is confirmed here, at least for f.
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Number of
trials (m)

Time interval
(At = 0.10)

Time interval
(At = 0.05)

Time interval
(At = 0.01)

Kernel
100 trials

u=1.044 £0.179
o = 0.489 & 0.041

= 1.045 + 0.258
o = 0.486 % 0.049

po=1.042 £ 0.517
o = 0.491 = 0.040

Kemnel
50 trials

p = 1.066 -+ 0.184
o = 0.493 £ 0.042

= 1.057 £ 0.271
o = 0.492 £ 0.053

= 1.096 £ 0.536
o = 0.497 £ 0.044

Kernel
25 trials

= 1.090 + 0.203
o = 0.504 £ 0.048

p=1.115 £ 0.289
o = 0.506 % 0.057

@ o= 1.116 + 0.557
o = 0.508 £ 0.046

Exact/Spectral
solution

poo= 0.997 4 0.141
o = 0.498 + 0.033

1t = 0.996 -+ 0.209
o = 0.496 £ 0.034

p = 1.007 + 0.412
o = 0.498 + 0.033

Table 2: Kernel estimates for the geometric random walk with parameters y = 1.0, o = 0.5
calculated from n sequential observations (n = 25, 50, 100) and 2000 replications.

4 Application to the instantaneous interest rate

There is a large literature documenting the link between the instantaneous short-term in-
terest rate and the pricing of zero-coupon bonds for various terms to maturity. The classic
one-factor model of the term structure is based on the assumption that the instantaneous
interest rate r{{) evolves in time according to the SDE

dr = —a(r — 7)dt + or"dW (22)

where W{t) is a standard Wiener process. Many models in the literature are special cases
of this equation. For example, the case 7 =0, v = 1 corresponds to geometric Brownian
motion; the case v = 0 has been treated by Vasicek [12]; the case v = 0.5 is well known as
the Cox, Ingersoll and Ross model {4]) and the case v = 1.0 has been treated by Brennan
and Schwartz {2]. Of course, it is not possible to observe the instantaneous interest rate
and hence any data used to estimate these parameters will be subject to measurement
error!. Clearly the resolution of this problem is a project for future research. However,
notwithstanding the known shortcomings of {22) as a practical model of the short-term
interest rate (see [1]}, given data on UK 2-year gilts yields,” it is possible to illustrate the
methods outlined above and reach some fentative conclusions on the magnitudes of the
parameters of interest.

In order to implement the simulation approach a scheme for the numerical integration of
(22) is required. The Milstein scheme is used in this application. For the general SDE
{2} the scheme is given by

g; 50'3:

Kipyr = X+ o + 0 0W; + EBXJ

((aw;)? - A;) (23)

Tnierest rates are both quoted and observed discretely.

*The dataset consists of 167 monthly chservations of nominal UK gilts yields from 1982 to mid-1996
{available on request}. Whilst data at the shorter end of the maturity spectrum might be considered
more desirable, such as overnight rates in the London interbank market, institutional features relating
to Bank of England operations in the money markets make these rates particularly noisy.

1842



where a; = a(X;,t;) and o; = (X}, ;). Table 3 shows the results of these calculations.

Model 500 Trials 1000 Trials
Parameters At = 0.50 At = 1.00 At =0.50 At = 1.00
o —0.038 £ 0.018 | —0.031 4 0.018 | —0.022 £ 0.018 | —0.029 £ 0.018
o 0.027 £ 0.007 | 0.0324£0.008 ] 0.025£0.007 | 0.025%0.007
v 0669 +£0.019] 0.747 4+ 0.018 1 0.644 £0.016 | 0.633 £0.017
Finin 42.93 42.58 42.92 42.54

Table 3: Comparison of parameter estimates of the term-structure equation using simulated
maximum likelikood estimation.

In estimating the model, 7, the long-term rate of interest in (22), was set at 8% reflect-
ing a judgement about the “market” view of this quantity over the period in question.
Parameter estimation of the model with # unconstrained broadly confirmed this view
although it proved difficult to get good estimates of o and #* simultaneously. This could
be due to a number of factors® and the matter was not pursued. The development of
better models of fundamental asset price dynamics is already recognised as a crucial area
of current financial research [3].

The results of the estimation are reported in table 3. It is clear that the drift term is
least well resolved indicating a fundamental problem with the specification of equation
(22). One possible course of action (see [1]) suggests that the drift and diffusion coeffi-
cients might be better estimated nonparametrically. In general, however, the parameter
estimates and the average value of the likelihood returned in the case of (22) are sta-
ble for different numbers of trials and different choices of discretisation in the Milstein
scheme. For this particular sample, the square-root formulation of the diffusion term in
[4] is probably the preferred choice among the common specifications.

5 (Conclusion

The robust conclusion of this research is that both methods of estimating the parameters
of SDE’s from discrete time-series data are viable in practice. Furthermore, both methods
have applicability beyond the scope of parameter estimation. In particular, the spectral
method used here to solve the Exolmogorov equatlon for the probability density, may be
used to solve any problem involving the solution of partial differential equations, even
when they have delta-like initial conditions. An obvious application in financial econo-
metrics would be to solve the fundamental bond-pricing equation of the term-structure
of interest rates. Clearly much work remains to be done as the problem of measurement

3For example, the UK exit from the exchange rate mechanism of the European Community.
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error needs to be addressed in situations where the entire density of stochastic process
needs to be propagated as opposed to just the low order moments.

References

[1]

2l

Ait-Sohalia, Y. (1996) “Nonparametric pricing of interest rate derivative securities”,
Eeonometrica, 64 527-560.

Brennan, M.J. and Schwartz, E.S. (1979) “A continuous-time approach to the pricing
of bonds”, Journal of Banking and Finance, 3 133-155.

Campbell, J.Y., Lo, AW, and MacKinlay, A.C. (1897} The Fconometrics of Finan-
cial Markets, Princeton University Press: Princeton, New Jersey.

Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985) “A theory of the term structure of
interest rates”, Feonemetrica, 53 385-407.

Canuto, C., Hussaini, M.Y ., Quarteroni, A. and Zang, T.A., {1988} Spectral Methods
in Fluid Dynamies, Springer-Verlag: Berlin Heidelberg New York.

Habbema, J.D.F., Hermans, J. and Van Der Broek, K. (1974) “A stepwise discrimi-
nant analysis programme using density estimation” in G. Bruckman (ed.) Proceedings
in Computational Statistics, 101-110, Physica-Verlag: Vienna.

Hall, P., Sheather, S$.J., Jones, M.C. and Marron J.S. (1991) “Cn optimal data-based
bandwidth selection in kernel density estimation”, Biometrika 78 263-270.

Kloeden, P.E., Platen, E. and Schurz, H. (1991) Numerical Solution of SDE Through
Computer Erperiments, Springer-Verlag: Berlin Heidelberg New York.

Merton, R. (1980) “On estimating the expected return on the market: an exploratory
investigation”, Journal of Financial Economics, & 323-361.

Scott, D.W. (1992) Multivariate Density Estimation: Theory, Practice and Visual-
tzatton John Wiley: New York.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis, Chap-
man and Hall: London.

Vasicels, O. (1977) “An equilibrium characterisation of the term structure”, Journal
of Financial Feonomics, 8 177-188.

1844



